GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW)
CHEMISTRY - COMPONENT 3 A410U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 3: CHEMISTRY IN PRACTICE

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

| cao | $=\quad$ correct answer only |
| :--- | :--- | :--- |
| ecf | $=\quad$ error carried forward |

bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
2	(a)				\mathbf{X} is magnesium $\begin{equation*} \mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \tag{1} \end{equation*}$	1			1		1
	(b)	(i)		$\begin{equation*} \mathrm{n}\left[\mathrm{Y}(\mathrm{OH})_{2}\right] \text { in } 600 \mathrm{~cm}^{3}=\frac{0.0431 \times 600}{1000}=0.02586 \tag{1} \end{equation*}$ 1:1 ratio of $\mathbf{Y}: \mathbf{Y}(\mathrm{OH})_{2}$ therefore $n(\mathbf{Y})=0.02586$ (1) $A_{\mathrm{r}}=\frac{2.27}{0.02586}=87.8$ therefore \mathbf{Y} is strontium / Sr (1)		1 1	1	3	2		
		(ii)	I	$\begin{aligned} & \mathrm{Y}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{YCO}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq}) \\ & \mathrm{Y}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{YCO}_{3}(\mathrm{~s}) \end{aligned}$ accept either equation but must be balanced and include state symbols; accept Sr in place of \mathbf{Y} ecf possible from part (i) if incorrect Group 2 metal identified	1			1			
			II	$\begin{align*} & 200 \mathrm{~cm}^{3} \text { of solution }=\frac{0.0431}{1000} \times 200=0.00862 \mathrm{~mol} \text { of } \mathrm{YCO}_{3} \tag{1}\\ & \text { mass of } \mathrm{YCO}_{3}=0.00862 \times M_{\mathrm{r}}\left(\mathrm{YCO}_{3}\right)=0.00862 \times 147.6 \tag{1}\\ & \quad=1.27 \mathrm{~g} \quad \text { must be given to } 3 \text { sig figs } \tag{1} \end{align*}$		3		3	2		

5-6 marks

All aspects of question covered and key details given, including those in bold print
The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout.

3-4 marks

Correct description of trend in thermal stability; basic description of apparatus / method used; reference to one control variable; observation and expected results
The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.

1-2 marks

Description of apparatus or method used / simple observation
The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary.

0 marks

The candidate does not make any attempt or give an answer worthy of credit.

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
	(a)			filter paper soaked in aqueous KNO_{3} / U-tube of agar / gel soaked in saturated KNO_{3} (or other suitable named electrolyte)	1			1		1
	(b)		$\begin{align*} & \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+} \tag{1}\\ & E_{\text {cell }}=1.52-0.77=0.75 \mathrm{~V} \tag{1} \end{align*}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			2			
	(c)		half-cell A solution becomes less green in colour (as the concentration of the Fe^{2+} decreases) / becomes more yellow or brown in colour (as the concentration of the Fe^{3+} increases) (1) half-cell B solution becomes less purple (violet) in colour (as the concentration of the MnO_{4}^{-}decreases) / becomes a paler pink in colour (as the concentration of the Mn^{2+} increases) (1)		1 1		2		2	
	(d)		any of following for (1) - cell not 100% efficient - cell not at standard temperature / conditions not standard - electrodes become contaminated on the surface (over time) - concentration of solutions changes (over time) - not a high resistance voltmeter			1	1		1	
			Question 3 total	3	2	1	6	0	4	

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(iii)	$\begin{align*} & \mathrm{n}(\text { alkene })=\frac{0.103}{2}=0.0515 \mathrm{~mol} \tag{1}\\ & M_{\mathrm{r}}(\text { alkene })=\frac{3.50}{0.0515}=68.0 \tag{1} \end{align*}$ therefore molecular formula is $\mathrm{C}_{5} \mathrm{H}_{8}$ ecf possible from part (ii) if incorrect M_{r} and hence incorrect molecular formula award (1) for stating that alkene is a diene / contains two $\mathrm{C}=\mathrm{C}$ bonds (ratio of $1 \mathrm{U}: 2 \mathrm{Br}_{2}$) award (1) for structural formula and (1) for name any of the following penta-1,3-diene $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$ penta-1,4-diene $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ penta-2,3-diene $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$ penta-1,2-diene $\quad \mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{CH}_{3}$			1 1 1 2	5		
	Question 4 total	1	3	8	12	3	1

COMPONENT 3: CHEMISTRY IN PRACTICE
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
1	3	8	0	11	4	6
2	6	5	6	17	4	10
3	3	2	1	6	0	4
4	1	3	8	12	3	1
5	4	0	0	4	0	4
6	2	3	5	10	9	1
Totals	19	21	20	60	20	26

Eduqas GCE A Level Chemistry Component 3 MS Summer 2017 (New)/ED

